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The capillary dynamics of a thin layer of viscous liquid which wets  a smooth solid surface is considered. To formulate the problems 
of wetting dynamics tile method of matched asymptotic expansions is used. A general method of closing the asymptotic 
theory of the dynamic wetting angle which was previously known in the first approJdmation of a small capillary number is described 
[1]. For the arbitrary external problem of thin-layer hydrodynamics, which describes the flow outside a small neighbourhood of 
a moving wetting line, a,,ganptotic boundary conditions are formulated on the wetting line in the third approximation. The transient 
problem of the spontaneous spreading of a drop of viscous liquid over a solid surface, for which the first-approximation theory 
is known [2], is solved. The dynamics of the drop is determined for long times. The shape of the drop is obtained in three 
approximations in the capillary number. The effect of the gravity force on the shape of the spreading drop is determined. The 
limits of applicability olF the modal of the quasi-uniform shape of a drop with a dynamic wetting angle which depends on the 
velocity of the edge of the drop are found. 

1. T H E  B O U N D A R Y  C O N D I T I O N S  ON A M O V I N G  W E T T I N G  L I N E  
W H E N  A T H I N  L A Y E R  OF L I Q U I D  S P R E A D S  

We will consider the flows of a thin layer of  a viscous incompressible liquid over a solid surface when 
there is no tangential stress on the free surface of the layer and the normal stress is determined by the 
capillary pressureFn = -P0 + o(R-I + R -1) (P0 is the pressure in the gas, R1 and R2 are the principal 
radii of  curvature and 0 is the surface tension). The no-slip condition is satisfied on the solid surface. 

When the surface is wet, Reynolds number Re falls as one approaches the contact line between the 
three phases due to the decrease in the layer thickness h, and in a fairly small neighbourhood of this 
line Re < 1. We will assume that the characteristic maximum thickness h0 and the characteristic minimum 
thickness h m of  the layer in creeping flow differ considerably: So = In (ho/hm) >> 1. 

In problems of the wetting of a smooth solid surface, hm is the minimum thickness of the layer for 
which a macroscopic description of its flow is appropriate. The value of hm is usually equal to several 
molecular dimensions a. For very small dynamic contact angles (~0 "~ 1) relatively large values of hm 
(hm ~" a) are possible if the van der Waals forces are ignored in the equations of  motion. 

The non-linear structure of the creeping flow of  a layer in the region of the contact (wetting) line, 
as we know [1-3], has a universal form. Using the asymptotic solution of the third approximation [1], 
when h >> hra we can write the following relation for the slope a of the tangent to the surface of the 
layer 

et 3 = 9 C a ( s - - 3 1 1 n s + I n s - 4 s  + " ' / '  o~=1V hi (1.1) 

s=ln(h/h~,)+C, Isl >> 1, ICal ~ I 

Here  V is calculated in coordinates on the solid surface hm ~ hm, and the capillary number 

Ca=ixx) 0 / ~ ,  x) 0 = ( n 0 x  0 / 0 t )  

(IX is the dynamic vi,,~osity and n is the normal to the contact line L0 at the point x0 directed into the 
dry surface). 

Relation (1.1) holds in a small neighbourhood of  the wetting line and corresponds to the condition 
for the curvature to decrease 
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dcos (x/dh --> O, h/h,, ~ oo 

Note that the terms of the expansion in the large parameter s in (1.1) correspond to successive 
approximations with respect to Ca, which eliminate the residual in the boundary condition for the normal 
stress [2, 3]. 

The parameter C - In h~, of the asymptotic form (1.1) is generally known for the first approximation 
[1, 2]. We will describe a general method of determining it for the higher approximations. Estimating 
the angle cz(hm) from the energy equation in the region of the wetting line [2], which holds by virtue 
of the thermodynamics of irreversible processes, we can write 

3 /(9Ca), ~. 3 C = ct m = tx m / (9Ca) < 1 (1.2) 

p 
C=~.+~ln~. ,  L>i ;  h,n=Ka 

Here a is the size of the molecule of liquid, which determines the lower limit (with respect to the layer 
thickness) of the region of energy dissipation, and ~ = o~ (czs is the equilibrium wetting angle and o,n 
= 0 in the case of complete wetting), if we can neglect the non-viscous component of the energy 
dissipation on the wetting line (for example, dissipation due to kinetic effects [4]). If the dissipation at 
the microscopic level in the region of the wetting line is considerable, it must be included in the 
determination of the angle t ~  from the energy equation [2]. 

The coefficient K in (1.5) must, in general, be determined using experimental data, since its accurate 
value depends on the energy dissipation at the microscopic scale of the flow, where the macroscopic 
equations are unsuitable. If the dynamic wetting angle is finite or, for small h, the van der Waals forces 
are not appreciable, we have K -  1. This is confirmed by a comparison of the first-approximation theory 
[2, 3], in which K = 2, with experiments. For the second and third approximations with respect to s a 
more vigorous knowledge of the coefficient is necessary. 

For very small dynamic wetting angles a0 --* 0 and when the van der Waals forces have a considerable 
effect, large values of K -> 1 are possible, and for complete wetting (txm = 0) [1] 

_ 1 /  t I /  
h,~, = (3Ca) /3(A / (27t0))/2 (1.3) 

whereA' is the difference in the Hamaker constants, which characterize the liquid-solid and liquid-liquid 
interaction [5]. The coefficient in (1.3) corresponds quite well to the second approximation in (1.1).t 

Suppose h0 is the maximum scale of the layer thickness in the inner region, where the dynamic wetting 
angle described by (1.2) exists. This definition applies, generally speaking, to the region in the section 
of the liquid layer orthogonal to the wetting line at the point x0, and the scale ho may change considerably 
along the line L 0. 

In the inner region of relatively great thicknesses (h ~> h0) the line of contact between three phases (the 
inner line) corresponds to taking the limit as h/ho ~ O, x ~ Xo ~ Lo. The outer contact line L0 may not 
coincide with the microscopic wetting line L. for very small values of ~0 and when the van der Waals forces 
have a considerable effect, if in the region of the wetting line an anomalously thin film is moving [1, 6, 7]. 

The boundary-value problem for determining the transient dynamics of the wetting line L. was 
formulated in [8]. This problem will be formulated after the law of motion of L0 is obtained. 

We will simplify the formulation of the hydrodynamic problem using the large parameter s0. We will 
limit the outer region by the strong inequality 

ln(hoth).~So (1.4) 

If the ratio h/h o satisfies (1.4), the right-hand side of (1.1) can be represented in the form of a series 
in powers of ln(h/ho). Confining ourselves to two terms of the expansion, we can rewrite (1.1) in a small 
neighbourhood of the line L 0 in the following form 

( 
a3 = a~o)(ho) + 9Ca11-  ~-L| ln  '--' + .... x -~ x o 

k 3s0) h0 
(1.5) 

tVOINOV O. V. The hydrodynamic theory of wetting. Preprint No. 179-88. Inst. Teplofiz. Sibirsk. Otd. Acad. Nauk SSSR, 
1988. 
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The angle ~0 is found from the asymptotic form (1 1) when h = h0 , " • 

The parameter h0 enables the solution procedure to be refined. Note the linearity with respect to 
ln(h/ho) of the thh:d-approximation relation (1.5). The term with ln2(h/ho) appears in (1.5) only in the 
fourth approximation with respect to s in (1.1). 

Because of condition (1.4) when formulating external problems of the dynamics of a liquid layer a 
small neighbourhood of the wetting line L(0) is excluded from the region in which h(x, t) is defined. 
The non-linear asymptotic form (1.1) or its linearized version (1.5) (with the constraint (1.4)) can be 
considered as the boundary condition on the wetting line. 

2. DYNAMICS OF A SPREADING DROP 

The spreading of a drop of viscous liquid over a plane solid surface under the action of capillary forces 
for small values of the slope of the free boundary ct and low Reynolds numbers is described by the 
evolution equation [9] 

3..hh = a div(h3 grad Ah) 
3t 3~t 

which has the following form in the axisymmetric case 

I 3 h = _  t~_~_l ~__~._h3r O_O__ O_O__ 3h 
3"7 3p r Or Or r Or r 3---r 

(2.1) 

(r is the radius). At the edge of the drop (r = r0) 

h/ho -4 0 as r -4 r 0 (2.2) 

The passage to the limit (2.2) is limited by condition (1.4), which is valid by virtue of the fact that So "> 1. 
The conditions for the solution to be regular at the drop centre 

3 Ah=0, 3h 3"r ~ r  = 0 when r = 0 (2.3) 

must also be satisfied. 
The evolution of the drop shape depends on the initial conditions and, generally speaking, the shape 

of the surface h(r, 0 must be specified at a certain to. However, as t -4 -0 the solution depends only 
slightly on the conditions when t = to if, in the region of the edge of the drop, the asymptotic form (1.1) 
or the boundary condition (1.5) holds. Hence, the limit solution, to which the solutions with specified 
initial conditions are close at long times, is of the greatest interest. 

It is necessary to obtain the asymptotic solution of Eq. (2.1) with conditions (1.5), (2.2) and (2.3) as 
t -4 oo. A solution was obtained in [2] in the first approximation. According to this solution the radius 
of the base of the drop r o ~ t 1/1° as t -4 ~o. 

The left-hand side of (2.1) in the outer region is relatively small at long times. Hence, the solution 
of Eq. (2.1) can be sought in the form of a series in powers of Ca = ~tu0/o (~0 = rb) with coefficients 
which depend on time 

h = f o + f l + f 2 +  .... L - C a " ,  f o = a o ( l - r 2 / r o  2) (2.4) 

We obtain the equations for f,, after substituting (2.4) into (2.1) and equating the sums of terms with 
like powers of Ca. 

We will refine the conditions for determiningfn. We will assume, without loss of generality, that the 
parabolic profile (se~ Fig. 1) of the zeroth approximation h = f0 defines the volume of the drop V, where 
the correctionsfn (n ~> 1) do not perturb this volume 

tO 

 oro =--2 V; I rrndr-- 0, n >l (2.5) 
g o 

By (2.2) we have at the edge of the drop 
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a 

Fig. 1. 

/ '  

J~ = 0, r = r0 (2.6) 

In the first approximation, this method gives (in agreement with [2]) 

3 (2.7) ct3 =(2ao/ro)3 =otm +9Caso, ho =a  o 

Note that in [2] a more accurate expression for et 3 is given which differs from (2.7) in that it has the 
additional term -9Ca. 

To construct a solution in higher approximation we will represent (2.1), taking (2.3) and (2.4) into 
account, in equivalent integral form, by introducing the variable z instead of the radius 

31.tr 4 ~ 3'h 32 3h r 2 
16oh 3 ~ - ~ d z = ( 1 - Z ) ~ z 2 ( 1 - Z ) ~ z  , z= 1--- T (2.8) 

z r0 

3--" t 
3t + 2(1- z) a~° 3 r o 3z ' ~o = r6 

Hence we obtain equations for the small perturbations fl and f2 in (2.4) 

32 3k _ 3 r: 
( l -  v ( l -    -g2z - 

( l -z> ~---~-(1-Z) 3z - 1 6 a f  3 ~'z - - ~ - d Z - ~ o z  (2.10) 

The equations of the higher approximations can be written similarly. When determining fl, f2, • • • 
from (2.5), (2.6) and (2.8) the following problem arises 

d2 d~n = On(z); n = 1,2 .... (2.11) 
dz 2 (1- z) dz 
1 

Swndz=O; Wn=0, z=0;  ( l - z )  d~n =0, z = l  
o dz 

Specific expressions for 41 and 42 are defined by (2.9) and (2.10). 
By calculating the right-hand of (2.9) and integrating (2.11) we obtain, in the second approximation 

f l = a - ~  h ,  13=3r3Ca, ~l=-zl-~ - (2.12) 

Z 
• ~ = 2 z +  S lnz 

o i ' - z  dz 

Boundary condition (1.5) can be satisfied for solutions of the second and third approximations 
simultaneously. 
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3. THE O U T E R  S O L U T I O N  h(r,  t) IN THE THIRD A P P R O X I M A T I O N  

We will consider the most interesting case of complete wetting (¢Xm = 0). The following relations 
hold for the coefficient [I in (2.12) by (2.7) 

~-~-= a° + a ~  3s o .... (~o2] "= ab + ' ' ' 3 s  o 
( 3 . 1 )  

Using (2.5), (2.7), (2.12) and (3.1) we obtain from (2.10) 

02 
( l  - z )  = ~ ~ 2  +-.., ~2 2W~ 

~Z 2 = Z 3 

Integrating problem (2.11) corresponding to (3.2) we obtain 

[~ 2 z 
f2 =-'~'-¥2 ¥2 = ( I n z - z - 4 ) ~  l n z .  3 ~ l n 2 z .  ^ Z,  2 

a~'~ ' o~aZ--Jl-z 20 ~ _ z a Z - w Z - - ~ l n  z+21z 

1 

I =  ~ ~ ' '  dz = 2;(3)= 2,4041... 
0 I - - Z  

(~(x) is the Riemann zeta-function). 
We take the limit asz --> 0 in the expression for the slope o~ for solution (2.4), (2.12) and (3.3) 

(3.2) 

(3.3) 

2 Oh 2 (  + ~ V' ~2 ) 
O~ . . . . .  r 0 3Z r 0 ~ a0 ~"  I+a'--~¥2 

~ = 2 + l n z +  .... ~[  = 2 I - 6 - ( 2 + 1 n z )  2 +.... 

(3.4) 

Using (3.1) we obtain from (3.4) 

ct 3 = Cto 3 + 9Ca(2 + in z + (21 - 6) / 3s o), 

s o = 2a o / r o 

z o ( 3 . 5 )  

We express ln(h/h~) for ho = ao in (1.3) in terms of In z using (2.4) and (3.1) and bearing in mind the 
inequality f0 ~. A. we  obtain 

ln (h /ao)=lnz+( l+lnz ) / (3So)+ .... z--->O 

As a result, boundary condition (1.5) takes the form 

o~ 3 =a~o)(ao)+9Ca(lnz+l/(3So))+ .... z ~ O  (3.6) 

(O~o) is given by (1.1) with h = ao). By requiring that (3.5) and (3.6) should be identical we obtain the 
dynamic wetting angle o~ of a spherical segment of equivalent volume 

3 = 9 C a (  s ° -  3 9s o ] s° =In a° 
¢t o 2 - I n s  o + l n s  o+c  o , h~ 

¢t o = 2a o / r o, c o = 17-12~(3) = 2,575... (3.7) 

The relatively small value of the conm'bution of the last term in (3.7), corresponding to the third approxi- 
mation (the second makes a considerable contribution) indicates the effectiveness of the method of 
solution. Thus, for So = 10, which is typical for macroscopic drops, the term of the second approximation 
is 28% of s0, which is a relatively large value, while the term of the third approximation is only 0.5%. 
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Formula (3.7) can be represented in the equivalent form 

a 3 = a 0)(h0) + 0 ,575 . . .  C a / s ( h 0 )  (3.8) 

s = l n ( h l  hm), ho =ao e-2 

(the quantity ~0)(h) is defined by (1.1)). The quantity h0 in (3.8) corresponds better to the upper limit 
of the inner region than the height of the spherical segment a0, and hence (3.8) should be more accurate 
than (3.7). 

The solution for t ~  = 0 is an intermediate asymptotic form as t --> ~*, since because Ca --> 0, by (1.3) 
the parameter So decreases and the fundamental condition So >> 1 should break down for sufficiently 
large values of t. 

For incomplete wetting (am > 0), relaxation of the angle ~0 ---> o~ occurs. In the second approximation, 
using (1.2) we obtain for ~, > 1 

a ~ = a 3  + 9 C a [ s o - 2 - ~ l n ( l + s o l M ] ,  so=ln(aolh'm) (3.9) 

Unlike (3.7) there is no term with In So in (3.9) for long times since ~ --> *~. 
The formulae for the wetting angle (3.7), (3.8) or (3.9) give complete information on the limit dynamics 

of the edge of the spreading drop. Taking into account the fact that a)0 = r6 we obtain an ordinary first- 
order differential equation (as in [2]), which is easily integrated. 

4. THE EFFECT OF THE GRAVITY FORCE ON THE SPREADING OF 
THE DROP 

The axisymmetric spreading of a viscous drop over a horizontal solid surface taking capillary forces 
and the ponderability of the liquid into account for small angles is described by the equation 

Oh l 0 f h  3 O f (~ O 0 h ~  
O"'t = r -~r ~ ~ r-~r l p g h - 7 " ~ r  r-~r )) (4.1) 

(p is the density of the liquid andg is the acceleration due to gravity). A solution of (4.1) will be sought 
as t ---> -0 with conditions (1.5), (2.2) and (2.3). 

The spreading of a drop can be described in the first approximation using the model of the equilibrium 
shape of a free surface in a gravitational field with a dynamic wetting angle which depends on velocity. 
The weak effect of the gravity force on the spreading of a drop was estimated in [2] using this model. 
This effect leads, in particular, to a relative slowing of the decrease in the wetting angle, although the 
spreading is accelerated. It is interesting to obtain the limits of applicability of the equilibrium model 
with respect to the Bond number 

B = pgr 2 1 ~ (4.2) 

The solution h(r, t) will be sought in the form of a series in powers of Ca and B with coefficients 
9un(r, t). Here we take into account the most important terms with the lowest powers 

M 2 
h = '~ B'nq~om + Ca ~ Bm{Plm + Ca 2 ¢P2o +.. .  (4.3) 

m=O m=O 

tp, m Ca" B m = fnm ; f ,o -- f , ,  fo = aOZ; M >I 2 

The quantitiesfn are known from (2.4), (2.12) and (3.3) with B = 0. 
Terms of the form Ca2B m, m I> 1 are not considered in view of the smallness of the term f20 that is 

quadratic in Ca. In view of the fact that the second term in (4.3) is small compared with the first, a 
quadratic approximation in B, while simultaneously taking into account a large number of terms in the 
first sum (4.3), is reasonable. To determine the coefficients fun in (4.3) it is convenient to integrate 
Eq. (4.1), bearing (2.3) in mind. We obtain 
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16ah 3 z --i  ~ + ~  (1- z) ~ (4.4)  

The derivative 0'/~ is defined in (2.8). The conditions for finding the eoeffieientsfnm when n + m > 
0 follow from (2.3), (2.5) and (2.6) 

fnm =O, Z=0; 

Substituting (4.3) into (4.4) we obtain 

, Ofnm I 
(l-z)--~--z =0, z=l; I f ,  mdz=0 (4.5) 

0 

f01 = 4~8 Bao(2Z - 3Z 2 ) (4.6) 

To obtain the coefficients in (4.3) it is sufficient to represent the quantities on the left-hand side of 
(4.4) in the foHowtag form 

h = fo +fol +fo2 +flo + ".. 

:o' /h3=~-3(:i,, + A, + :o~)/ :o +6:o~ / :o 2 +... 

Evaluating the integrals 

I b'fo _ 2ao~_ .f ~ dz - - z(l  - z), 
z ro 

I ~ e 0 1  - -  a°~B z(1 - z) 2 
I - ~ - d z - -  12ro 
z 

we obtain, after substituting (4.3) into (4.4), and equation forfll 

~Z 2 ( l - z )  ~Z 4" ~Z =48a 2 ~.Z 2 Z) 
Hence, taking into account the expression for fl0 using (2.12) and conditions (4.5) we obtain 

fl,=4-~a~ (13z_6z2_17zinz+(13_12z)i2 o I-zinZ dz) (4.7) 

The term in (4.3) that is quadratic in B, which is independent of Ca, is found from (4.4) with the left- 
hand side equal to zero, We obtain 

1 
fo2 = i1.~2 B2a°(-z+2z3) (4.8) 

Using (2.12), (4.6) ~Lnd (4.8) we obtain from (4.4) an equation forfl~ 

22 262 B ~fl.I ~B 2 ( 8 +22 13 ) 
~z 2 ( l - z )  OZ-4-  aZ = ~ , - ~ -  z -  

(4.9) 

The solution of (4.9) on the basis of expression (4.7) for/it and conditions (4.5) 

45 1--i~To 7 = z - T  ol-Z J 

enables us to obtain, as z --> 0 

OJ~2 [ ~Z m (1 / 1152)~B2a~2 (8 in z + 70 / 3) (4.10) 
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The other terms in (4.3) give as z ~ 0 

Of 01 = Bao 
Oz 24 

bfo2 1 
~)z 1152 

Ofl0Oz ='~0 f ( 2 + l n z )  

aoBZ ' 3fl I ~B ( 7 1 lnz] 

(4.11) 

where [~ = 3/sr3o Ca from the solution of the first approximation in Ca. 
As r ~ r0 it follows from (4.10) and (4.11) that 

5 B +Z(&)2+..] 
a 3=a~(B)+9Ca  2+lnz-~2--~- 6 \ 2 4 )  

2 ' h  2a0(1+~4  l(.ff._B ]2 +.. .]  
a = ~'o ~"Z + .... a ° ( B )  = r o - 2  \ 24J  

(4.12) 

The fact that there is no contribution fromB and B 2 in the coefficient in front of inz in (4.12) confirms 
the correctness of (4.10) and (4.11). The corresponding terms occur in (4.10) and (4.11), but they 
compensate one another when calculating a 3. 

By requiring that (4.12) and (1.5) (or (3.6)) should be identical we obtain 

ag(B)=9Ca so=ln ao 
s ° - 2 + 4  24 6 2"4 ' h;. 

(4.13) 

The quadratic perturbation with respect to Ca is identical with the corresponding term in (3.7) and 
hence is not written in (4.13) for brevity. 

The expansions in powers of B which occur in (4.13) lose their significance when B = 24. This can 
be seen if we continue the expansion of ~0(B) 

 ,_b2 7 +l b5 797 ) . OC 0 = 1 + + 2 b3 _ - -  b4 b 6 + .... b = - -  (4.14) 
r 0 2 5 20 35 2800 ' 24 

Here the coefficients of b n hardly change with n for n -> 1, and the radius of convergence b0 ~ 1 (B0 
24). We can determine the function o~(B) in exact form instead of using expansion (4.14), which 

diverges when B = B0. With a perturbation on the right-hand side of (4.13), which depends on B, the 
situation becomes more complex, since then the whole series in B becomes difficult to construct. 

Note that the quadratic perturbation in B in (4.13) is approximately the same as the linear perturbation 
for B = 24. At this po~t  all the higher terms of the expansion -CaB ~ are obviously important. The 
sign of the term with B" on the right-hand side of (4.13) and the analogy with (4.14) indicate that the 
exact value of the perturbation in B on the right-hand side of (4.13) should not exceed the first term 
(5/96)B in order of magnitude. Hence, in view of the fact that So "> 1 formula (4.13) may be approximately 
true when B - 24 provided tx0(B) is calculated in exact form. When B > 24 the model of the equilibrium 
shape of the drop loses its meaning. 

The equilibrium solution (Ca = 0) of Eq. (4.1) can be written in terms of a modified Besscl function 
of the first kind of zero order 

2 I°(~'fB)- I° x/B f~(B) 

l 

f~-' = I o (-~/B) - 2J 1 o (~-~]B)~ d~ (4.15) 
0 
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where a0 is given by (2.4). By (4.15) 

Oh I = 2a° k(B) (4.16) 
¢t°(B) =- -~r  r=~, r0 

1 

The root of the equation (Bf~(B))  - t  = 0, which has the least modulus, defines the accurate value of 
the radius of convergence B0 of the expansion of txo(B). Calculation gives B0 = 26.37, which confirms 
the estimate B0 ~- 24 obtained from (4.14). 

Hence, the fomaula for the wetting angle (4.13) is suitable up to relatively high values of the Bond 
number B - 24 ff,~o(B) is found from (4.16). When B ~ 12, Eq. (4.13) gives an accuracy in calculating 
tx~ not worse than 1% for so - 10. 

By combining (2.5), (4.2) and the equality ~0 = rb with (4.13) and (4.16) we can write a differential 
equation for the change in the drop radius ro for the equation of the change in the wetting angle tXo, 
which refines the analogous equation of the first approximation [2]. 

For incomplete wetting (tXm > 0) the formula for the dynamic wetting angle Cto, taking the values of 
B into account for large T, is written in the same way as (3.9). 
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